Asymmetric electrowetting--moving droplets by a square wave.
نویسندگان
چکیده
Here droplet oscillation and continuous pumping are demonstrated by asymmetric electrowetting on an open surface with embedded electrodes powered by a square wave electrical signal without control circuits. The polarity effect of electrowetting on an SU-8 and Teflon coated electrode is investigated, and it is found that the theta-V (contact angle-applied voltage) curve is asymmetric along the V = 0 axis by sessile drop and coplanar electrode experiments. A systematic deviation of measured contact angles from the theoretical ones is observed when the electrode beneath the droplet is negatively biased. In the sessile drop experiment, up to a 10 degrees increment of contact angle is measured on a negatively biased electrode. In addition, a coplanar electrode experiment is designed to examine the contact angles at the same applied potential but opposite polarities on two sides of one droplet at the same time. The design of the coplanar electrodes is then expanded to oscillate and transport droplets on square-wave-powered symmetric (square) and asymmetric (polygon) electrodes to demonstrate manipulation capability on an open surface. The frequency of oscillation and the speed of transportation are determined by the frequency of the applied square wave and the pitch of the electrodes. Droplets with different volumes are tested by square waves of varied frequencies and amplitudes. The 1.0 microl droplet is successfully transported on a device with a loop of 24 electrodes continuously at a speed up to 23.6 mm s(-1) when a 9 Hz square wave is applied.
منابع مشابه
Optimal Strategies for Moving Droplets in Digital Microfluidic Systems
In digital microfluidic systems, analyte droplets (volume typically á1μl) are transported on a planar electrode array by dielectrophoretic and electrowetting effects. While recent work has demonstrated feasibility mainly with single droplets on small arrays, these systems hold promise for commercial-scale applications by simultaneously moving many droplets on large arrays. This paper introduces...
متن کاملMoving-part-free microfluidic systems for lab-on-a-chip
Microfluidic systems are part of an emerging technology which deals with minute amounts of liquids (biological samples and reagents) on a small scale. They are fast, compact and can be made into a highly integrated system to deliver sample purification, separation, reaction, immobilization, labelling, as well as detection, thus are promising for applications such as lab-on-a-chip and handheld h...
متن کاملElectrical actuation of electrically conducting and insulating droplets using ac and dc voltages
Electrical actuation of liquid droplets at the microscale offers promising applications in the fields of microfluidics and lab-on-chip devices. Much prior research has targeted the electrical actuation of electrically conducting liquid droplets using dc voltages (classical electrowetting). Electrical actuation of conducting droplets using ac voltages and the actuation of insulating droplets (us...
متن کاملCross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting.
Two important electric forces, dielectrophoresis (DEP) and electrowetting-on-dielectric (EWOD), are demonstrated by dielectric-coated electrodes on a single chip to manipulate objects on different scales, which results in a dielectrophoretic concentrator in an EWOD-actuated droplet. By applying appropriate electric signals with different frequencies on identical electrodes, EWOD and DEP can be ...
متن کاملElectrowetting-Induced Droplet Movement in an Immiscible Medium
This paper describes and characterizes the electrowetting-induced movement of droplets in an immiscible medium. When an aqueous droplet undergoes electrowetting-induced motion in a continuous phase of olive oil, the droplet glides through the olive oil at a much higher velocity than is possible in the absence of oil and is able to travel greater than 10 times the electrode separation distance. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 7 10 شماره
صفحات -
تاریخ انتشار 2007